Rata‑rata per kelompok
Kelompok Kontrol: nKontrol = 5; Y = [85.2000, 87.1000, 83.8000, 86.4000, 84.9000]
YˉKontrol.=585.2000+87.1000+83.8000+86.4000+84.9000=85.4800 Kelompok Perlakuan_A: nPerlakuan_A = 5; Y = [92.3000, 94.1000, 90.8000, 93.5000, 91.7000]
YˉPerlakuanA.=592.3000+94.1000+90.8000+93.5000+91.7000=92.4800 Kelompok Perlakuan_B: nPerlakuan_B = 5; Y = [78.9000, 81.2000, 79.8000, 80.6000, 77.4000]
YˉPerlakuanB.=578.9000+81.2000+79.8000+80.6000+77.4000=79.5800 Deviasi absolut & rata‑rata deviasi per kelompok
Kelompok Kontrol: Z = [ 0.2800, 1.6200, 1.6800, 0.9200, 0.5800 ]
ZˉKontrol.=50.2800+1.6200+1.6800+0.9200+0.5800=1.0160 Kelompok Perlakuan_A: Z = [ 0.1800, 1.6200, 1.6800, 1.0200, 0.7800 ]
ZˉPerlakuanA.=50.1800+1.6200+1.6800+1.0200+0.7800=1.0560 Kelompok Perlakuan_B: Z = [ 0.6800, 1.6200, 0.2200, 1.0200, 2.1800 ]
ZˉPerlakuanB.=50.6800+1.6200+0.2200+1.0200+2.1800=1.1440 Zˉ..=151.0160imes5+1.0560imes5+1.1440imes5=1.0720 ANOVA pada |deviasi|
SSB=i=1∑kni(Zˉi.−Zˉ..)2 SSB=5(1.0160−1.0720)2+5(1.0560−1.0720)2+5(1.1440−1.0720)2=0.0429 SSW=i=1∑kj=1∑ni(Zij−Zˉi.)2 SSWKontrol=(0.2800−1.0160)2+(1.6200−1.0160)2+(1.6800−1.0160)2+(0.9200−1.0160)2+(0.5800−1.0160)2=1.5467 SSWPerlakuanA=(0.1800−1.0560)2+(1.6200−1.0560)2+(1.6800−1.0560)2+(1.0200−1.0560)2+(0.7800−1.0560)2=1.5523 SSWPerlakuanB=(0.6800−1.1440)2+(1.6200−1.1440)2+(0.2200−1.1440)2+(1.0200−1.1440)2+(2.1800−1.1440)2=2.3843 SSW=SSWKontrol+SSWPerlakuanA+SSWPerlakuanB=5.4834 MSB=df1SSB=20.0429=0.0214 MSW=df2SSW=125.4834=0.4569 W=MSWMSB=0.45690.0214=0.0469 p‑value dihitung dari F(df1=2, df2=12). Keputusan (α=0.05): p‑value tidak tersedia.